(LYS)(16)-based reducible polycations provide stable polyplexes with anionic fusogenic peptides and efficient gene delivery to post mitotic cells.

نویسندگان

  • Alan L Parker
  • Lorna Eckley
  • Surjeet Singh
  • Jon A Preece
  • Louise Collins
  • John W Fabre
چکیده

Extracellular stability, endocytic escape, intracellular DNA release and nuclear translocation of DNA are all critical properties of non-viral vector/DNA particles. We have evaluated a (Lys)(16)-based linear, reducible polycation (RPC) in combination with an acid-dependent, anionic fusogenic peptide for gene delivery to dividing and post-mitotic cells. The RPC was formed from Cys(Lys)(16)Cys monomers. Molecular weight was 24,000 Da, corresponding to an average of 10.5 peptide monomers per RPC. Non-reducible polylysine (PLL) (27,000 Da) and monomeric (Lys)(16) peptide were evaluated for comparison. (Lys)(16)/DNA particles were disrupted at fusogenic peptide concentrations well below those used for gene delivery. By contrast, RPC/DNA an PLL/DNA particles were stable in the presence of high concentrations of the anionic peptide. Addition of 10% serum virtually abolished the transfection ability of (Lys)(16)/DNA/fusogenic peptide particles, but had little effect on RPC/DNA/fusogenic peptide particles. RPC/DNA/fusogenic peptide particles were highly effective for gene delivery to both cell lines and post-mitotic corneal endothelium. PLL/DNA/fusogenic peptide particles were moderately effective on cell lines, but gave no gene delivery with corneal endothelial cells. We conclude that (Lys)(16)-based RPC/DNA/fusogenic peptide particles provide a gene delivery system which is potentially stable in the extracellular environment and, on reductive depolymerisation, can release DNA plasmids for nuclear translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploration of peptide motifs for potent non-viral gene delivery highly selective for dividing cells.

BACKGROUND The immunogenicity of viral DNA vectors is an important problem for gene therapy. The use of peptide motifs for gene delivery would largely overcome this problem, and provide a simple, safe and powerful approach for non-viral gene therapy. METHODS We explored the functional properties of two motifs: the (Lys)(16) motif (for binding and condensing DNA, and probably also nuclear tran...

متن کامل

Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells.

Synthetic vectors were evaluated for their ability to mediate efficient mRNA transfection. Initial results indicated that lipoplexes, but not polyplexes based on polyethylenimine (PEI, 25 and 22 kDa), poly(L-lysine) (PLL, 54 kDa) or dendrimers, mediated efficient translation of mRNA in B16-F10 cells. Significant mRNA transfection was achieved by lipoplex delivery in quiescent (passage 0) human ...

متن کامل

Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA.

A novel self-crosslinked and reducible peptide was synthesized for stable formation of nanoscale complexes with an siRNA-PEG conjugate to enhance transfection efficiency in serum containing condition without compromising cytotoxicity. A fusogenic peptide, KALA, with two cysteine residues at both terminal ends was crosslinked via disulfide linkages under mild DMSO oxidation condition. The reduci...

متن کامل

DNA release dynamics from reducible polyplexes by atomic force microscopy.

Controlled intracellular disassembly of polyelectrolyte complexes of polycations and DNA (polyplexes) is a crucial step for the success of nonviral gene delivery. Motivated by our previous observation of different gene delivery performances among multiblock reducible copolypeptide vectors ( Manickam, D. S. ; Oupicky, D. Bioconjugate Chem. 2006, 17, 1395- 1403 ), atomic force microscopy is used ...

متن کامل

Atomic Force Microscopy Studies of DNA Release in Gene Delivery Dynamics

This chapter reviews recent advances in the understanding of DNA release dynamics from polymeric gene delivery systems. Atomic force microscopy (AFM) has recently been applied to monitor DNA release from bioreducible polyplex nanoparticles and layer-by-layer (LbL) thin films in real time. DNA release dynamics is central to the understanding and control of gene delivery from gene delivery nano-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1770 9  شماره 

صفحات  -

تاریخ انتشار 2007